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Large interface deformation in two-layer thermal
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Laboratory experiments have been performed to study two-layer thermal convection
with large interface deformations. The two fluids have different densities and viscosities
but there is neither surface tension nor chemical diffusion at the interface. The initial
density stratification is stable, but can be reversed by thermal effects. Two different
mechanisms of interface deformation are described: (i) purely thermal features due
to convection inside each layer independently can locally and partially deform the
interface, leading to dynamic topography; (ii) when the effective buoyancy number
(the ratio of the stabilizing chemical density anomaly to the destabilizing thermal
density anomaly) reaches a critical value, a whole-layer regime takes place, where
the system is fully destabilized and one of the two layers invades the other one in
the form of large domes. Several successive pulsations can be observed provided the
viscosity ratio is large enough (i.e. > 5). Typical scales (time, length, temperature
excess, velocity) and behaviours (direction of spouting, shapes) are determined for
each case. Both features are only transient states: because of stirring, the system
systematically evolves towards one-layer Rayleigh–Bénard convection. However, this
transient state can persist for a very long time compared to the characteristic time
scale of thermal convection.

1. Introduction
The interest in two-layer thermal convection has been inspired largely by natural

problems, in particular the dynamics of the Earth’s mantle (see Tackley 2000 for
a recent review); it has also been a theoretical challenge, because of the possibility
of Hopf bifurcation and time-dependence at marginal stability (Richter & Johnson
1974). This problem has thus been extensively studied over the past 30 years. However,
the simple addion of a second layer considerably complicates the problem of thermal
convection and opens up a very large parameter space that has not yet been fully
explored.

Stability analysis (Richter & Johnson 1974; Renardy & Joseph 1985; Renardy &
Renardy 1985; Le Bars & Davaille 2002) has pointed to the possible occurrence
of two different regimes, depending on the buoyancy number B , the ratio of the
stabilizing chemical density anomaly to the destabilizing thermal density anomaly:
(i) when B is larger than a critical value Bc depending both on viscosity and layer
depth ratios, a stratified regime occurs, with convecting patterns developing above
and below a stable interface; (ii) when B is lower than the critical value, what we
term a ‘whole-layer’ regime occurs, with a deformed interface and convection patterns
developing over the whole depth of the system.



76 M. Le Bars and A. Davaille

Cooled copper plate T2

Fluid 2
q2, m2, h2

Fluid 1
q1, m1, h1

Heated copper plate T1

30 cm

H

Figure 1. Experimental set-up and onset of whole-layer regime in experiment 56 (close to
marginal stability). The upper layer 2 is dyed with fluorescein. Vertical and horizontal black
lines correspond to the thermocouple probes that measure temperature inside the tank. White
lines in the lower and upper layers correspond respectively to isotherms 31 ◦C and 10 ◦C
(Davaille et al. 2003) (in this experiment, T2 = 2.5 ± 0.1 ◦C and T1 = 38.7 ± 0.1 ◦C). The initial
wavelength of interface deformation is equal to twice the tank depth, as predicted by the linear
study (Le Bars & Davaille 2002).

Finite-amplitude studies have mostly addressed the stratified case because of its
suggested occurrence in the Earth’s mantle (Richter & McKenzie 1981; Busse 1981;
Olson 1984; Cserepes & Rabinowicz 1985; Ellsworth & Schubert 1988; Cserepes,
Rabinowicz & Rosemberg-Borot 1988; Sotin & Parmentier 1989; Cardin, Nataf &
Dewost 1991; Olson & Kincaid 1991; Davaille 1999a). Other studies have also been
performed to characterize the respective influence of thermal and mechanical coupling
between layers, but restricting the interface to remain flat (Rasenat, Busse & Rehberg
1989; Busse & Sommermann 1996; Andereck, Colovas & Degen 1996; Degen, Colovas
& Andereck 1998). In particular, they describe a time-dependent behaviour, involving
no deformation of the interface, with a convective pattern oscillating between viscous
and thermal coupling.

Recently, the whole-layer regime has been reported experimentally by Davaille
(1999b): focusing on the interaction of thermal convection with a sharp discontinuity
in density and viscosity in the parameter range likely to be relevant to the Earth’s
mantle, she observed large periodic interface deformations developing over the whole
depth of the system. Using the same experimental set-up (figure 1), Le Bars &
Davaille (2002) showed that close to marginal stability, the early scales of the whole-
layer regime are predicted well by linear analysis. At large Rayleigh number Ra,
the situation is complicated by the superimposition of various types of convective
features: in each of the two fluids, the destabilization of its outer thermal boundary
layer possibly leads to the formation of small-scale plumes as in classical Rayleigh–
Bénard convection (Howard 1964), thus referred to as ‘purely thermal’; but purely
thermal features from hot and cold plates also interact at the interface, where they
induce a large-scale thermochemical regime, either with a stable interface (even
if partly deformed), thus corresponding to the stratified regime, or with a fully
destabilized interface, thus corresponding to the whole-layer regime. As shown in
figure 2, the critical value Bc(γ, a) (where γ is the viscosity ratio between the two
layers and a their depth ratio) determined by marginal stability – typically ranging
between 0.2 and 0.5 – is still relevant for the early stages of experiments (a few
overturn times), but the system then evolves over time.

In the present study, we focus on cases where the interface deforms: our purpose
is to extend the initial conclusions presented above by precisely describing the onset,
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Figure 2. Observed initial large-scale thermochemical regime as a function of Rayleigh and
buoyancy numbers: �, × and + represent experiments where the initial large-scale regime
is respectively the whole-layer regime, the stratified regime (including points from Davaille
1999a, where B > 1) and the stratified regime with partly deformed interface. Open circles
denote experiments close to marginal stability, where only one scale of convection is excited.

Tank Length (cm) Width (cm) Depth H (cm)

1 30 30 6.1
2 30 30 14.8
3 30 10 16.4 ‘2D tank’
4 30 30 8.0

Table 1. Dimensions of the four tanks.

patterns and evolution of the various convective features. Experimental conditions are
summarized in § 2 and possible behaviours of the whole-layer regime close to marginal
stability are presented in § 3. We then address large-Ra dynamics: § 4 focuses on the
small-scale purely thermal mode and § 5 on the large-scale whole-layer thermochemical
mode. Section 6, finally, characterizes the time-evolution and the progressive stirring
of the two fluids.

2. Experimental conditions
The experimental set-up is similar to Davaille (1999a) (figure 1): two miscible fluids

with different kinematic viscosities (ν1 and ν2), densities (ρ10
and ρ20

at temperature
T0) and depths (h1 and h2), initially at ambient temperature, are superimposed in
a tank (see dimensions in table 1). Working fluids are a mixture of water, cellulose
(< 2% in weight) and salt (< 7 kgm−3) (see Tait & Jaupart 1989 and Appendix A),
except for experiment 13 where miscible Newtonian silicon oils (Rhodorsil 47V 5000
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Probe Coordinate in cm measured from the extremity

Vertical 0.35 0.60 1.25 2.05 3.90 5.95 7.20
8.20 9.25 10.25 12.70 13.70 14.30 14.70

Horizontal 7.00 8.00 9.05 9.60 10.15 10.65 12.70
14.80 15.85 16.30 16.80 18.05 19.05

Table 2. Location of thermocouples in the vertical and horizontal probes (precision of
±0.03 cm). In all experiments, thermocouples were also located in the bottom and top boundary
plates.

and 45V 500) are used. At time t = 0, both baths are turned on, and the lower (upper)
copper plate is continuously heated (cooled) until the bath has reached its assigned
temperature T1 (T2), typically after 10 minutes.

The initial density distribution is stable, and because of experimental constraints,
the heaviest fluid 1 is also always the most viscous. The Prandtl number in each layer
is always greater than 100 to ensure that inertial effects are non-existent (Krishnamurti
1970). The high viscosities render diffusion of salt across the interface extremely slow
compared to the characteristic time scale of the instabilities, so that its effects on
mixing are negligible compared to other mechanical entrainment processes (more
details can be found in Davaille 1999a). Up to 29 thermocouples are used to measure
the local temperature at selected points, located in the boundary plates and on a
vertical and a horizontal probe (see figure 1 and table 2). All temperatures are read
every 30 s through a scanning voltmeter connected to a computer.

Physical properties of both layers are measured for each experiment: the only
important uncertainty comes from the viscosity measurements (accuracy of 25%).
For natrosol solutions, the viscosities and the coefficient of thermal expansion α are
temperature-dependent (see Appendix A): it is thus difficult to choose meaningful
values. However, we expect that motions taking place in each layer separately (i.e.
purely thermal convection) are mostly driven by boundary layer instabilities: values
at the mean temperature of the boundary layer are then used. We also expect that
processes taking place over the whole depth of the tank and involving both layers
(i.e. thermochemical convection) are mostly driven by instabilities at the interface:
values at a reference temperature of 20 ◦C (i.e. the initial mean temperature of the
tank) are used. This is somewhat arbitrary, but note that (i) for most experiments,
the temperature-dependence of viscosity is smaller than its composition-dependence,
and (ii) according to the linear theory, changes of the thermal expansion coefficient
have a minor effect on convection (see Appendix B).

Apart from the Prandtl number, four dimensionless numbers are necessary to fully
describe the two-layer system:

the viscosity ratio

γ =
ν1

ν2

; (2.1)

the layer depth ratio

a =
h1

H
, (2.2)

where H = h1 +h2;
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the Rayleigh number

Ra =
αg�T H 3

κν2

, (2.3)

where κ is the thermal diffusivity coefficient and �T = T1 − T2 (it is sometimes more
convenient to use the Rayleigh number of each layer taken separately

Rai =
αig�Tih

3
i

κνi

, (2.4)

where �Ti is the temperature change through layer i and αi the thermal expansion
coefficient at the mean temperature of layer i);
the buoyancy number, the ratio of stabilizing chemical density anomaly to destab-
ilizing thermal density anomaly

B =
�ρχ

αρ0�T
, (2.5)

where �ρχ = ρ10
− ρ20

is the chemical stratification and ρ0 = (ρ10
+ ρ20

)/2.
In the above definitions γ and a characterize the mechanical differences between the

two layers, Rayleigh numbers measure the strength of convection, and B determines
the stability of the whole system and the ability of the interface to deform. Values of
the parameters for the 59 experiments are listed in table 3. This set of experiments
allows us to separate several different behaviours from the simple trend presented in
figure 2: all regimes indexed in table 3 are schematically presented in figure 3 and
will be precisely described in the following.

3. Whole-layer regime at low Rayleigh number
Ten experiments were performed close to marginal stability. In our experiments,

the two fluids are initially at the same temperature T0, and then heated from below
and cooled from above. Outer thermal boundary layers subsequently grow from the
hot and cold plates (phase (i) on figure 4b) until a linear temperature profile is
established through the whole tank. Then, provided the critical Rayleigh number is
reached, convection starts in the form of large domes with a wavelength comparable
to twice the tank depth (figure 1), which grow in both directions until they reach the
opposite boundary (phase (ii) on figure 4b). The wavelength and time scale of
these convective features are predicted well by marginal stability analysis (see Le
Bars & Davaille 2002). Their subsequent behaviour ranges between two limit cases:
overturning and oscillations.

3.1. Overturning

In some experiments, for instance experiment 46 presented in figure 4, the domes
spread under the boundary plates, cool down (respectively heat up) and finally sink
(respectively rise) encapsulating pockets of the other fluid in the process. This corres-
ponds to phase (iii) on figure 4(b). The temperature structure then remains fixed
throughout the rest of the experiment (phase (iv) on figure 4b): the convective
motions are steady and the initial heterogeneities are stirred and stretched by the
flow. When their size becomes small enough, they are finally completely erased by
chemical diffusion.

3.2. Oscillations

Very close to Rac, thermal effects just compensate chemical stratification, thermal
diffusion and viscous dissipation. Then hot domes still develop but they do not
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Experiment γ a B Ra Behaviour Tank

1 27 0.5 0.13 1.2 × 106 WL1icr 1
2 12 0.5 0.24 1.5 × 104 WLosc → comp 1
3 12 0.5 0.18 5.2 × 104 WLcomp 1
5 190 0.5 0.33 4.8 × 105 WL1vo 1
6 170 0.25 0.24 4.3 × 105 TD → WL1vo 1
7 150 0.75 0.24 4.2 × 105 WLcomp 1
8 13 0.5 0.16 1.0 × 107 WL1vo 2
9 22 0.25 0.17 1.5 × 107 WL1icr 2

10 100 0.25 0.33 4.6 × 106 TD → WL1vo 2
13 8 0.25 0.093 1.3 × 107 WL1icr 2
16 1 0.25 0.29 8.0 × 105 TD → WL1overturn 2
17 1 0.75 0.3 5.9 × 105 WL2overturn 2
18 21 0.3 0.31 8.8 × 106 WL1vo 2
19 17 0.3 0.55 6.6 × 106 TD 2
20 15 0.3 0.8 4.1 × 106 STR/small TD 2
21 9 0.3 0.49 5.8 × 106 TD 2
22 12 0.3 0.38 5.9 × 106 TD 2
23 100 0.3 0.5 4.1 × 106 STR 2
24 16 0.3 0.46 6.8 × 106 TD 3
25 37 0.3 0.39 5.9 × 107 TD 2
26 590 0.9 0.28 6.3 × 107 TD 2
27 30 0.9 0.11 4.7 × 107 WL2icr 2
28 11 0.6 0.49 7.1 × 106 STR → WL1 2
29 30 0.83 0.4 5.9 × 107 TD 2
30 20 0.83 0.49 5.6 × 106 TD 2
31 25 0.83 0.18 4.2 × 107 WL2icr 2
32 1.7 0.6 0.34 5.1 × 106 strat → WL2overturn 2
33 1.3 0.57 0.43 1.7 × 106 strat → WL2overturn 2
35 77 0.25 0.4 6.8 × 107 TD → WL1vo 2
36 23 0.9 0.59 5.8 × 107 TD 2
37 1.8 0.5 0.28 3.0 × 106 TD → WL1overturn 2
38 70 0.5 0.22 5.4 × 107 WL1vo 2
39 1 0.25 0.62 2.2 × 106 strat → TD 2
40 23 0.75 0.42 1.4 × 107 TD 2
41 1400 0.75 0.32 7.7 × 107 TD 2
42 22 0.75 0.18 2.3 × 106 WL2 or 1 icr 2
43 24 0.69 0.19 1.3 × 106 WL2 or 1 icr 2
44 2 0.69 0.059 4.1 × 106 WL2overturn 2
45 1.3 0.44 0.1 6.8 × 103 WLoverturn 4
46 1.1 0.44 0.048 6.7 × 103 WLoverturn 4
47 6.7 0.5 0.2 1.8 × 104 WLosc 4
48 6.5 0.55 0.34 2.4 × 104 WLcomp 4
49 7 0.55 0.33 2.9 × 104 Wloverturn 4
50 10 0.55 0.3 5.5 × 104 Wloverturn 4
51 4.1 0.5 0.33 1.8 × 104 WLoverturn 4
52 140 0.3 0.3 2.4 × 107 WL1vo 2
53 180 0.5 0.3 2.7 × 107 WL1vo 2
54 190 0.3 0.23 3.6 × 107 WL1vo 2
56 6.8 0.5 0.33 2.8 × 104 WLcomp 4
57 83 0.29 0.38 5.5 × 106 TD → WL1vo 2
58 10 0.75 0.19 1.2 × 106 WL2overturn 2
60 14 0.3 0.53 5.1 × 106 TD 2
61 6.8 0.78 0.31 1.8 × 106 TD 2
62 7.7 0.78 0.23 2.1 × 106 WL2icr 2
63 36 0.83 0.16 4.6 × 107 WL2icr 2

Continued
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Experiment γ a B Ra Behaviour Tank

5–98 150 0.41 0.34 9.0 × 107 WL1 2
6–98 46 0.91 0.21 5.9 × 108 WL2 2
7–98 34 0.3 0.3 1.6 × 107 WL1 2
A800 4000 0.51 0.41 2.3 × 108 WL1 2

uncertainty 50% 5% 10% 40%

Table 3. Values of experimental dimensionless numbers (γ, a, B,Ra) and observed thermo-
chemical regime. TD= dynamic topography, STR= stratified, WL= whole-layer; close to mar-
ginal stability: osc= oscillations, comp =composite overturn/oscillations; at large Ra: vo =
vertical oscillations, icr= initial configuration reversals, 1= most viscous layer invading, 2= less
viscous layer invading. The tank used is also indicated for each experiment (see table 1).

spread under the cold plate before cooling down (figure 5a) and no large-scale stirring
occurs. Although the interface is highly deformed, the two fluids remain separate and
travelling waves with a period comparable to predictions from marginal stability
analysis can be observed for several days (figure 5b, c). This behaviour is most easily
observed when the viscosity contrast is relatively large (γ > 5 or γ < 1/5) and/or when
the buoyancy ratio is close to critical, in agreement with theoretical linear analysis
(see Le Bars & Davaille 2002).

However, oscillations lasting several days are quite difficult to obtain experimentally
because they occur in a very narrow (Ra, B) window (Richter & Johnson 1974; Le
Bars & Davaille 2002) and are very sensitive to small perturbations in the thermal
boundary conditions. Besides, the limited aspect ratio of our tanks (see table 1)
probably prevents the setting up of stable structures. Therefore, in most experiments,
both overturning and oscillation modes combine and some pulsations are observed
before complete mixing. For example, the experiment presented in figure 6 is in the
appropriate (Ra, B) range, but exhibits an asymmetric encapsulating structure: in the
right half of the tank, overturning patterns comparable to those presented in figure
4 take place; in the left half of the tank, two zones constituted mostly of fluid 1
and fluid 2 respectively are observed. These zones behave like the domes seen in
figure 5(a), and also travel; but stirring is sufficiently efficient to lead to one-layer
convection after three pulsations (figure 6b, c).

In the following, we will focus on large-Ra dynamics. Then, two types of convective
features are superimposed at two different length scales: in each fluid, purely thermal
features as shown in figure 7 arise from the destabilization of the outer thermal
boundary layers, whereas the large-scale thermochemical mode occurs at the interface
from the interaction between the two fluids.

4. Large-Rayleigh-number dynamics: characteristics of the small-scale purely
thermal mode

4.1. Onset of purely thermal convection

At high Rayleigh numbers, the onset of convection corresponds to the appearance of
purely thermal features, coming out of the growing thermal boundary layers either
in layer 1 above the hot plate or in layer 2 below the cold plate. The behaviour of
each fluid taken separately is comparable to the classical one-fluid Rayleigh–Bénard
convection: when the layer Rayleigh number Rai is supercritical, the thermal features
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Figure 3. Regime diagram as a function of the buoyancy number B and the layer depth
ratio a: triangles correspond to immediate mixing, squares to initial configuration reversals
illustrated in (a) and circles to vertical oscillations illustrated in (b); open symbols correspond
to domes from the upper less viscous fluid 2, and filled symbols to domes from the lower most
viscous fluid 1. As in figure 2, + represents stratified experiments with interface deformations
as in (c), which possibly evolve towards destabilization, and × stratified regime with a flat
interface (including points from Davaille 1999a, where B > 1): thermochemical plumes shown
in (d) occur when one layer is thinner than the corresponding thermal boundary layer (see
Davaille, Girard & Le Bars 2002); when both layers are large enough, convection develops
above and below the interface as in (e).

inside fluid i take the form either of cells with a typical size comparable to the
layer depth or of plumes arising from the destabilization of the corresponding outer
thermal boundary layer (figure 7). For Rai > 104, typically, the onset time scales as
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Figure 4. (a) Picture, (b) temperature signal measured by the vertical thermocouple probe
and (c) horizontal temperature measured by the horizontal thermocouple probe for experiment
46, where overturning occurs. On (b) the triangle shows the time when the picture was taken;
successive curves at decreasing temperatures correspond to thermocouples located at 0, 0.35,
0.60, 1.25, 2.05, 3.90, 5.95, 7.20 and 8 cm from the hot lower plate. Phase (i) corresponds to
the establishment of a linear temperature profile by conduction from the copper plates, phase
(ii) to a rising hot dome, phase (iii) to the cooling of this dome and phase (iv) to the steady
state. On (c), the horizontal location is normalized by the width of the tank; crosses on the
right show the location of the thermocouples.

(Howard 1964)

τi =
h2

i

πκ

(
Rac

Rai

)2/3

. (4.1)

Our measurements follow this model well (figure 8): the best fit to a Ra−2/3
i law gives a

critical Rayleigh number Rac = 1300 ± 500, in agreement with the value of 1641 ± 422
determined experimentally by Davaille (1999a) (in this reference, the coefficient π
was omitted in the theoretical expression (3) p. 230 but was taken into account for
the calculations). Since, during the onset of convection, the copper plate temperature
conditions were somewhere between ‘fixed flux’ and ‘constant temperature’, these
experimental results should be compared to the following theoretical values: (i)
Rac =1100.7 for a shear-stress-free isothermal upper boundary and a rigid isothermal
lower boundary (Pellew & Southwell 1940), and (ii) Rac = 816.7 for a shear-stress-free
isothermal upper boundary and a heat-flux-prescribed rigid lower boundary (Sparrow,
Goldstein & Jonsson 1964). Taking into account uncertainties in our measurements,
theoretical and experimental values show reasonable agreement.

4.2. Interaction with the interface: dynamic topography

When thermal plumes reach the interface, they are affected by both density
and viscosity contrasts. For large buoyancy ratio (B > 1 typically), the chemical
stratification acts like a barrier and prevents penetration. However, when B � 1,
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Figure 5. As figure 4 but for experiment 47, where travelling waves are recorded
over several days.
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Figure 6. As figure 4 but for experiment 56, where three oscillations are recorded before
overturning (dashed lines show isotherms 31 ◦C and 10 ◦C for outer boundary temperatures of
2.5 ± 0.1 ◦C and 38.7 ± 0.1 ◦C, Davaille et al. 2003).

thermal features from one of the outer boundaries can partly and locally destabilize
the interface. We call this ‘dynamic topography’, because it is essentially due to
motions in each of the layers taken separately.
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Figure 7. Purely thermal plumes in layer 2 arising from the destabilization of the cold
thermal boundary layer (experiment 13).
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Figure 8. Thermal onset times in layer 1 (circles) and layer 2 (squares) as a function of the
layer Rayleigh number. The onset is defined as the time at which the temperature in the
boundary layer deviates from the initial conductive trend: with this method, the critical time
for the onset of convective instabilities is determined with an error of ±15 s, i.e. between
two successive temperature scans. When possible, this measurement was confirmed with direct
observation of the appearance of thermal plumes. The line corresponds to the best fit according
to (4.1): the experimental critical value is Rac = 1300 ± 500.

4.2.1. Thermal plumes from the most viscous layer

This is the most likely case to generate topography at the interface, since the only
barrier to interface deformation is the density stratification. Then, once convection
has started in the most viscous layer, fluid 1 can locally penetrate fluid 2. It does so
in the form of cylinders with an almost constant diameter comparable to the thermal
boundary layer thickness δ1 (figure 9); however the whole system remains stable.
These instabilities stop before reaching the opposite boundary.
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(a)

(b)

Figure 9. Pictures of dynamic topography due to the most viscous layer 1. (a) Experiment
25: the arrow shows the measured typical diameter (1.4 ± 0.1 cm), which is close to the thermal
boundary layer thickness δ1 = 1.5 ± 0.1 cm measured by the vertical thermocouple probe.
(b) Experiment 22: the arrow shows the measured typical diameter (2.5 ± 0.2 cm), close to the
thermal boundary layer thickness δ1 = 2.3 ± 0.1 cm measured by the vertical thermocouple
probe.

From the equations of motion, this behaviour can be modelled simply by adding
a stratification term (due to the chemical density contrast) to the classical equations
for Rayleigh–Bénard convection (see for instance Turner 1979, pp. 208–209). In
our experiments, inertial effects are negligible: motions are thus controlled by the
equilibrium between buoyancy effects and viscous drag forces. Let θ and w be the
typical temperature excess and the typical convective velocity. When a thermal plume
from layer 1 rises into fluid 2, its buoyancy is reduced because of the chemical
stratification �ρχ , while viscous drag forces remain dominated by motions in the
most viscous fluid 1 (Whitehead & Luther 1975). Hence, at first order, the equation
of motion becomes

η1

w

δ2
1

∼ (αρθ − �ρχ )g. (4.2)

Because of heat diffusion, the temperature excess evolves through time: the scaling
linear analysis gives

∂θ

∂t
∼ −κ

θ

δ2
1

, (4.3)

thus

θ ∼ �T exp(−t/τ ), (4.4)
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where τ = δ2
1/κ is the typical time of diffusion through a plume. The motion of a

diapir of fluid 1 into fluid 2 therefore is given by

η1

w

δ2
1

∼ (αρ�T exp(−t/τ ) − �ρχ )g. (4.5)

According to this equation, dynamic topography is possible only if αρ�T > �ρχ ,
which means B < 1: the velocity then vanishes at time

tmax ∼ −τ ln(B), (4.6)

which also gives the maximum elevation.
Let p(t) be the penetration of fluid 1 above the interface: to first order, we can

write

dp

dt
∼ w. (4.7)

Integration in time of (4.7) using (4.5) leads to

p(t) ∼ αρg�T δ4
1

κη1

(1 − exp(−t/τ )) − �ρχgδ4
1

κη1

t

τ
, (4.8)

taking p(0) = 0. This can also be written

p(t) = C1

αρg�T δ4
1

κη1

(
1 − exp(−t/τ ) − B

t

τ

)
, (4.9)

where C1 is a scaling factor which will be determined experimentally. We see that the
interface initially rises because of the thermal buoyancy, but it finally sinks because of
the combined effects of thermal diffusion and chemical stratification. The maximum
height is given by

p(tmax) = C1

αρg�T δ4
1

κη1

(1 − B + B ln(B)), (4.10)

provided p(tmax) remains lower than the layer 2 depth. Scaling laws (4.9) and (4.10)
explain the data well (figures 10 and 11), provided that the experimental constant is
C1 = 0.0031 ± 0.0011. Also, the time for maximum elevation in figure 10 is

tmax = −(0.058 ± 0.006)τ ln(B), (4.11)

introducing a scaling factor C2 = 0.058 ± 0.006 in (4.6). Numerical values of C1 and

C2 are both consistent with choosing a characteristic length scale δ̃1 = (0.24 ± 0.08)δ1

instead of δ1: this may be linked to the cylindrical morphology of the structures
studied.

4.2.2. Thermal plumes from the less viscous layer

This configuration is less favourable to partial invasion since a thermal plume
coming from the less viscous layer 2 encounters a viscosity increase as well as a
density stratification at the interface. Therefore, it will deform the interface only if the
most viscous layer is stagnant: interface topography is then moulded progressively by
several successive thermal plumes on a much longer time scale than in the previous
case (figure 12).
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Figure 10. Penetration of a thermal plume from the more viscous layer as a function of time:
squares show visually measured values for a given plume in experiment 22 (uncertainty is due
to difficulties in precisely locating the maximum interface position and to possible parallax
effects), and the line represents the fit according to (4.9) and (4.10). Because of entrainment,
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Figure 12. Dynamic topography in experiment 6: layer 1 is stagnant and progressively
deformed by convection in layer 2. In (a) Filled and open squares respectively represent
the evolution of the maximum and the minimum interface elevation as a function of time
(normalized by the period of thermal plumes in layer 2). At time t = 4τ2, when the picture (b)
was taken, layer 1 depth has reached a sufficient value for the local Rayleigh number to be
critical. The evolution of dynamic topography driven by the most viscous layer in experiment
22 is also shown in (a) with ×; time is then normalized by the period of thermal plumes in
layer 1.

5. Large-Rayleigh-number dynamics: characteristics of the large-scale
thermochemical whole-layer regime

5.1. Different types of whole-layer convection

The whole-layer regime corresponds to the full destabilization of the system: it
involves both layers, irrespective of their thermal history and their convective state.
It is thus to be distinguished from the dynamic topography addressed in § 4. Close
to marginal stability, two behaviours are possible as described in § 3: oscillations
take place at relatively large B and/or low Ra and/or large viscosity ratio γ , and
overturning takes place otherwise. The same observation is still relevant at large Ra,
as shown in figure 13.

5.1.1. Overturning

When 1 � γ < 5 typically (figure 13), the whole-layer regime takes the form of large
convective features developing through the whole depth of the tank. The interface
is distorted in all directions, and the two-layer initial system is never re-formed:
overturning and immediate mixing occurs (see also Olson & Kincaid 1991).
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Figure 13. Observed behaviours of whole-tank convection as a function of viscosity and layer
depth ratios: triangles stand for overturning and immediate mixing, diamonds for oscillations
close to marginal stability, circles for ‘vertical oscillations’ and squares for ‘initial configuration
reversals’; the numbers near the symbols indicate the number of pulsations, from 0 to >10.
The doming direction as defined in § 5.3 is also reported here: open symbols correspond to
cavity plumes and filled symbols to diapiric plumes; the dotted line represents the theoretical
law (5.14) a =1/(1 + γ −0.2) from Ribe (1998) and the dashed line the theoretical law (5.16)
a = 1/(1 + γ −1/3).

5.1.2. Pulsations

When γ > 5 typically, the whole-layer regime gives rise to large-scale oscillations:
the two fluids preserve their own identity, and the initial two-layer system is
periodically reconstructed. The number of observed pulsations rapidly increases with
γ (figure 13). Two mechanisms of initial system reconstruction are possible, namely
vertical oscillations and initial configuration reversals.

The typical evolution of vertical oscillations is presented in figure 14. Starting from
an isothermal stratified system, the lower fluid is progressively heated and becomes
lighter, whereas the upper fluid is cooled and becomes heavier (either by conduction
or thermal convection in each layer). Once the chemical density anomaly is cancelled
by thermal effects, the interface deforms in large domes that rapidly propagate until
they reach the opposite boundary: fluid 1 near the cold plate becomes heavier whereas
fluid 2 near the hot plate becomes lighter. The initial stratification finally reappears
and the system goes back to its initial configuration. A new oscillation can begin.
Stirring between the two layers of course slowly occurs by advection, but more than
10 successive pulsations have been observed.

Initial configuration reversals are presented in figure 15. They correspond to the
behaviour predicted by Herrick & Parmentier (1994): the whole invading layer pro-
gressively migrates, until the initial configuration is totally reversed, with fluid 1 lying
above fluid 2. Then, fluid 1 cools down, fluid 2 heats up, and the system finally goes
back to the initial state. In this case, stirring also occurs by advection, but several
successive reversals can be observed.
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Figure 14. Whole-layer dynamics of experiment 18 in the form of vertical oscillations:
pictures, instantaneous vertical temperature profiles measured by the vertical thermo-
couples probe, and deduced density profiles according to the equation of state ρi(T ) =
ρi0(1 − α(T )(T − T0)). Filled squares stand for thermocouples located in fluid 1, and open
circles in fluid 2. (a) Initial configuration, just before destabilization (t = 13.5min): the two
layers are stratified. Convection characterized by a vertical temperature profile has developed
in layer 2, whereas conduction takes place in layer 1. (b) Fluid 1 is now lighter than fluid 2,
leading to a rising dome (t = 16min). (c) The dome reaches the cold plate, where it progressively
cools down and becomes heavier than the surrounding fluid 2 (t = 20min). (d) It thus sinks
(t = 23min) and (e) finally goes back to its initial state (t = 27.5min); another dome has risen
in the background.

Vertical oscillations take place when domes cool down (respectively heat up) faster
than they spread out in the vincinity of the cold plate (respectively hot plate), and
rapidly collapse into the initial state: this thus occurs when the restoring force due to
chemical stratification dominates the thermal buoyancy, that is when the buoyancy
number is large (B > 0.2–0.3 typically, see figure 3) and/or the Rayleigh number
relatively small. On the other hand, initial configuration reversals take place when the
chemical stratification is low compared to the thermal buoyancy (B < 0.2 typically



92 M. Le Bars and A. Davaille

(a)

(b)

(c)

(d)

(e)

Figure 15. Whole-layer dynamics of experiment 9 in the form of initial configuration reversals.
(a) Chemically stratified state, just before destabilization (t = 9 min). (b) Fluid 1 is now lighter
than fluid 2, leading to rising domes (t = 12min). (c) The layer 1 reforms under the cold plate,
where it progressively cools down and becomes heavier; fluid 2 now corresponds to the lower
layer and is progressively heated (t = 14.5min). (d) The initial stratification finally reappears:
both fluids go back to their initial position (t = 17min) and (e) the chemically stratified system
is re-formed (t = 20.5 min).

and/or large Ra), but also when the invading layer is small and thus rapidly emptied
(a < 0.3 or a > 0.7, see figure 3).

5.2. Onset of the whole-layer regime

The whole-layer regime is excited when the thermal buoyancy is large enough to
induce motions over the whole depth of the tank in spite of thermal diffusion,
viscous drag and chemical stratification. The details of its onset depend on the initial
conditions in the system.

5.2.1. Initial buoyancy ratio lower than critical

When the buoyancy number is lower than the critical value determined by marginal
stability, the whole-layer regime is the most unstable thermochemical mode (see
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Figure 17. Sketches of (a) the temperature profile and (b) the chemical density profile at
large Rayleigh numbers; arrows indicate the temporal evolution.

Le Bars & Davaille 2002). Starting from isothermal fluids, we observed in all
corresponding experiments that (i) thermal convection first starts in the less viscous
layer 2, but is not sufficient to induce whole-layer motions; (ii) the thermochemical
regime is excited as soon as heat is transferred through the most viscous layer, either
by conduction or thermal convection. The thermochemical onset time is therefore
equal to the onset time of the purely thermal mode in layer 1 (figure 16).

5.2.2. Initial buoyancy ratio greater than critical

When B >Bc(γ, a), the configuration is ‘marginally stable’: the linear study predicts
a stratified regime with a stable interface. This is indeed observed experimentally, at
least for a few overturns. However, at high Rayleigh numbers the system evolves
over time and is finally destabilized (figure 16), as sketched in figure 17: the
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Figure 18. Time evolution of the effective buoyancy number until interface destabilization
for experiments 8 (marginally unstable: dashed line), 28 (marginally stable, but destabilized
after 1 hour, once the temperature contrast at the interface has reached a sufficient value:
dotted line) and 910 from Davaille (1999a) (marginally stable, but destabilized after 8.5 hours
because of thermal evolution and mixing at the interface: solid line).

temperature is almost constant through the core of each convecting layer, and a
thermal boundary layer develops around the interface with a temperature jump that
gradually increases (Herrick & Parmentier 1994); thermal convection in each layer
induces entrainment across the interface by viscous coupling (Davaille 1999a), which
continuously decreases the chemical stratification.

In this context, a first-order approach consists in ignoring the effective thermal and
chemical variations and only considering a constant mean density in each layer with
a sharp change at the interface:

ρi = ρi0 − αρ0(T − T0)i , (5.1)

where αρ0(T − T0)i is the mean value of thermal buoyancy αρ0(T −T0) over the layer i.
Such a system is then comparable to Rayleigh–Taylor configurations (see for instance
Whitehead & Luther 1975) and becomes unstable provided

ρ1 < ρ2. (5.2)

In terms of buoyancy number, (5.2) means that the effective buoyancy number
based on real chemical and thermal contrasts:

Beff(t) =
�ρχ (t)

αρ0(T − T0)1 − αρ0(T − T0)2
(5.3)

becomes strictly lower than 1.
In the experiments, Beff can be calculated using the vertical thermocouples probe

to measure the effective thermal buoyancy and scaling laws from Davaille (1999a)
to estimate the evolution of the effective chemical density contrast. As shown in
figure 18, destabilization indeed takes place for Beff slightly smaller than 1: the mean
experimental value at onset is

Beff = 0.98 ± 0.12 (5.4)

for 0.51 <a < 0.83, 1.3 <γ < 25 and 1.7 × 106 <Ra < 7.5 × 107.
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This simplified model focuses on the influence of the chemical stratification on
the destabilization: for the whole-layer regime to be excited, thermal effects have to
reverse the initial density contrast. These are indeed the predominant effects at large
Ra–large B . However, the model implicitly neglects thermal and viscous diffusion
during motions over the whole depth of the tank. A more complete analytical model
can be proposed following Herrick & Parmentier (1994): the buoyancy effectively
available for motions over the whole depth of the tank is given by

�ρeff = ρ2 − ρ1 = [αρ0(T − T0)1 − αρ0(T − T0)2] − �ρχ (t). (5.5)

Whole-layer motions are mainly governed by the most viscous fluid: therefore, we
define the Rayleigh number characteristic of interface destabilization as

Raeff =
�ρeffgH 3

κη1

. (5.6)

Whole-layer motions are excited when Raeff reaches the critical value of one-layer
convection with rigid boundaries Rac = 1707.76 (Chandrasekhar 1961), which means
that �ρeff reaches the critical value

�ρc =
Rac

Ra
αρ0�T γ. (5.7)

The chemical evolution of the system can be modelled using the scaling laws
defined by Davaille (1999a): it takes place on a much longer time scale that the
thermal evolution, as observed in the experiments (see figure 18 for instance). One
can thus separate two trends. (i) A medium-term thermal evolution: the chemical
density anomaly can then be taken as a constant and (5.7) means that the effective
buoyancy number has to reach a critical value

Bc =
1

1 + (γ /B)Rac/Ra
. (5.8)

(ii) A long-term chemical evolution: one can then consider that the thermal evolution
of the system has reached a steady state. For instance, the heat balance for the
idealized situation sketched in figure 17 implies

T1 − T1m

δ1

=
T1m − T2m

δ1 + δ2

=
T2m − T2

δ2

, (5.9)

where Tim is the mean interior temperature of layer i and δi is the thermal boundary
layer thickness, so

T1m − T2m =
�T

2
. (5.10)

For the long term, we can thus write

αρ0(T − T0)1 − αρ0(T − T0)2 = εαρ0�T (5.11)

where ε is a constant that depends on the variations of α(T ) (ε =1/2 if α is constant).
Equation (5.7) then means in terms of effective buoyancy number that

Bc = 1 − εγ
Rac

Ra
. (5.12)

Equations (5.8) and (5.12) thus complete the condition Beff < 1 given previously
in introducing thermal diffusion and mechanical dissipation in the condition for
destabilization. However, both conditions tend quite quickly towards 1, and the error
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Figure 19. Cavity plume in experiment 31, where the invading layer is the less viscous: the
arrow shows the measured diameter 9.3 ± 1.0 cm for a theoretical value given by (5.19) of
10.3 ± 2.1 cm.

bars on our measured Beff do not allow us to recover experimentally the expected
dependence.

From a general point of view, we conclude that the onset of whole-layer convection
at high Rayleigh number occurs whenever the more viscous layer convects and
Beff < 1.

5.3. A Rayleigh–Taylor-type destabilization: shapes and direction of doming

As observed in the closely related case of Rayleigh–Taylor instabilities (Whitehead &
Luther 1975), the pattern of destabilization depends on the direction of doming: in
most experiments, we observe domes developing from the most viscous fluid into the
less viscous one in the form of large cylinders called ‘diapiric plumes’ separated by
cusps (figures 14 and 15). In some cases however, those cusps transform into active
sinking features, in the form of large blobs followed by a thinner tail, comparable to
cavity plumes (figure 19).

In Rayleigh–Taylor instabilities, the direction of “spouting” (Ribe 1998) (i.e.
superexponential growth of interfacial extrema) is determined by the relative value
of two parameters, characterizing the ‘penetrability’ of each layer: the viscosity ratio,
since it is easier to penetrate a less viscous layer; the layer depth ratio, since it is
easier to invade a deeper layer, where boundary conditions do not limit motions. For
‘rigid’ boundary conditions, the “spouting” direction changes when

h1

h2

=

(
ν1

ν2

)0.2

(5.13)

(Ribe 1998, private communication), which means with our notation

a =
1

1 + γ −0.2
. (5.14)

In our configuration, the destabilization is due to thermal transfer, which must
therefore be taken into account. Consider a buoyant particle located at the interface:
its ability to reach the i boundary is measured by Rai , the ratio of buoyancy to
thermal and viscous diffusive effects through the fluid i (see for instance Turner 1979,
pp. 208–209). Once the interface is unstable, its deformation will tend to develop
through the layer where motion is easier, thus through the layer with the highest Rai .
The doming direction thus changes when

Ra1 = Ra2, (5.15)
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which means at first order

h1

h2

=

(
ν1

ν2

)1/3

⇔ a =
1

1 + γ −1/3
. (5.16)

As described by Ribe (1998), the higher exponent in (5.16) than in (5.14) corresponds
to an increased influence of the viscosity ratio: in the Rayleigh–Taylor calculations, the
configuration is inherently unstable and viscosities only influence the ‘penetrability’.
In our proposed first-order approach, viscosities have a twofold influence: they act
on the ‘penetrability’, but also control heat transfers, which are responsible for the
interface destabilization.

Experimental observations reported in figure 13 indicate a dependence on a and γ

in agreement with (5.14) and (5.16), but do not allow a choice to be made between
the two proposed coefficients.

5.4. Characteristic wavelength and diameter

The selected wavelength in our configuration is totally different from Rayleigh–
Taylor instability (figure 20a). Initial perturbations of the interface are due to thermal
transfers from the hot and cold plates. Since the largest temperature fluctuations come
from the most viscous fluid, this also controls the wavelength of doming: figure 20(b)
thus exhibits a slight dependence on Ra1 corresponding to the experimental law

λ

h1

= 9.1Ra−0.14
1 , (5.17)

accurate for both directions of doming with a typical precision of 20%.
As observed in figure 21, the diameter of diapiric plumes scales as

λ

ddia

= 2.0 ± 0.3. (5.18)

Measurements for cavity plumes are more difficult since our tank is not large enough
to observe more than 2 or 3 successive structures and not long enough for the
expected spherical shape with a fixed diameter dcav to fully develop before reaching
the opposite plate. A simple volume conservation of fluid 2 however gives

4/3π(dcav/2)3 ∼ λ2h2 (5.19)

that seems to indicate the relevant order of magnitude (see figure 19 for instance).
In both cases, we note that when purely thermal plumes exist in the layer before

doming, each dome collects several small-scale instabilities.

5.5. Typical velocities

Since inertial effects are negligible, convective motions are controlled by the
equilibrium between buoyancy effects and viscous drag forces. When both layers
are involved, drag forces are dominated by the most viscous fluid (Whitehead &
Luther 1975): the scaling analysis then gives a typical domes velocity

w ∼ �ρeffgd2

η1

, (5.20)

where d is a typical size of the dome and �ρeff the density contrast available for
motion over the whole depth as given by (5.5), taking into account both thermal and
chemical effects.

Figure 22 presents measurements for two examples. Cavity plumes exhibit a con-
stant velocity (figure 22a), which can be compared to (5.20) using measured �ρeff
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Figure 20. (a) Wavelength of diapiric plumes (filled circles) and cavity plumes (squares)
normalized by the predictions for Rayleigh–Taylor instabilities (λ= 4πh1(γ /180)1/5 in the case
of a � 1 and γ � 1 and λ= 2πh2(γ /3)1/3 in the case of a close to 1 and γ � 1, Ribe 1998):
theoretical values for Rayleigh–Taylor instabilities do not indicate the relevant parameter
dependence. (b) Wavelength of diapiric plumes (filled circles) and cavity plumes (squares)
normalized by the depth of the most viscous layer as a function of the most viscous layer
Rayleigh number: heat transfers in fluid 1 control the initial perturbations at the interface,
and thus the selected wavelength.

and d = dcav: results are presented in figure 23. In the case of diapiric plumes, the
development can be divided in two steps (figure 22b):

(i) During an ‘initiation’ stage, the diameter of the interface deformation
progressively increases with the height and the velocity is mainly constant. The
theoretical value (5.20) can then be calculated from measured �ρeff and d = ddia (see
figure 23).

(ii) Once the interface deformation reaches a value comparable to ddia, a ‘maturation’
stage starts: the deformation takes the form of a cylinder with a nearly constant
diameter. The characteristic length that must be used in (5.20) is intermediate between
the height of the plume h and ddia, and the rising speed rapidly increases with h.
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viscous layer Rayleigh number: the line shows the mean value 2.0 ± 0.3.
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Figure 23. Ratio of the theoretical velocity given by (5.20) to the measured velocity of diapiric
plumes (filled circles) and cavity plumes (squares): the dashed line corresponds to a scaling
factor C3 = 1/(32 ± 18).

This behaviour is reminiscent of the ascent of diapirs created by injection of a
buoyant viscous fluid through a small orifice, presented by Olson & Singer (1985): a
coefficient ln(h/ddia) was then introduced in (5.20) to take into account the cylindrical
morphology. In our experiments however, the relatively small depth of the tank as
well as the large error bars on the theoretical speed do not allow such a dependence
to be recovered.

As shown in figure 23, both the initial velocities of diapiric plumes and the constant
velocities of cavity plumes are consistent with a scaling factor

C3 =
1

32 ± 18
. (5.21)

The large scattering is mainly due to the difficulties in measuring �ρeff and dcav (see
§ 5.2 and § 5.4).

5.6. Pulsation periods at large viscosity ratio

As described in § 5.2, the interface is destabilized when thermal effects are large enough
to induce whole-tank motions in spite of thermal and mechanical diffusion as well as
chemical stratification: for the initial destabilization, this means that the thermal den-
sity contrast between the two fluids has to increase from 0 (initially isothermal fluids)
to the critical value �ρχ + �ρc, where �ρc depends on viscous and thermal diffusions
(see § 5.2). Then, the chemical signal �ρχ remains stable, and the further rising and
sinking motions correspond only to the gain and loss of the ‘dynamic’ part of the
density difference �ρc (Herrick & Parmentier 1994): this is mainly controlled by the
fluid with greater viscosity, which slows down the whole process. We can thus scale
the observed pulsation periods at large viscosity ratio with the characteristics of layer
1. It turns out that the dependence is similar to the case of purely thermal convection:

tpulsation =
h2

1

πκ

(
Rac

Ra1

)2/3

, (5.22)

where the experimental determination of Rac gives Rac = 880 ± 170 (figure 24).
Thermal plumes in layer 1 and thermochemical features have similar periodicities.
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Figure 24. Observed period of initial system reconstruction depending on the Rayleigh
number of the layer with greater viscosity. Circles denote ‘vertical oscillations’ and squares
‘initial configuration reversals’; open symbols correspond to cavity plumes and filled symbols
to diapiric plumes. The line shows the best fit according to (5.22): Rac = 880 ± 170.

However, the critical Rayleigh number for whole-layer motions is smaller, in
agreement with marginal stability analysis that predicts the whole-layer regime to
be the most unstable (see Le Bars & Davaille 2002). Moreover, these two convective
features act on totally different length scales, since several small-scale thermal plumes
are collected inside each large-scale thermochemical structure (see § 5.4).

6. Time evolution: from whole-layer to one-layer convection
Once the two-layer system is destroyed, thermochemical heterogeneities are

dispersed over the whole volume of the tank: the mixture can then be considered as
a single equivalent fluid, characterized by a complicated viscosity, strongly spatially
variable and an ‘internal’ temperature field due to the thermal compensation of the
chemical stratification between fluids 1 and 2.

Examining the destabilization of the outer thermal boundary layers, we note that
the local viscosity of the equivalent fluid νlocal depends on the local proportion of
fluids 1 and 2, and can thus range between ν1 (fluid 1 alone) and ν2 (fluid 2 alone).
Since the excited period depends on ν

2/3
local (Howard 1964), a noisy wavelet analysis

is recorded (figure 25c). Moreover, as described in § 5.6, the ‘chemical’ signal �ρχ ,
corresponding to the temperature variation

�ρχ

αρ
= B�T, (6.1)

is stable, and does not act on convective motions that are controlled by additional
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fluctuations: the passage of a particle of fluid 1 anywhere in the tank thus differs
from the passage of a particle of fluid 2 by B�T , explaining the presence of large
temperature variations over the whole depth (figure 25b).

Local stirring and ultimately chemical diffusion progressively annihilate the
chemical difference between the two fluids, and thus the associated temperature
difference: the usual configuration finally returns, characterized by fluctuations
limited to the thermal boundary layers (figure 25b) and two excited periods only,
corresponding to plumes from hot and cold plates. At large local Rayleigh number

(R̃ai > 104 typically), their periods scale as (Howard 1964)

τi =
H 2

πκ

(
Rac

R̃ai

)2/3

, (6.2)

where

R̃ai =
αig�TiH

3

κνmixed

. (6.3)

Here, νmixed corresponds to the viscosity of the ‘mixed’ solution, �Ti is the temperature
contrast through the boundary layer i and αi is the thermal expansion coefficient
at the mean temperature of the boundary layer i. The critical Rayleigh number
determined experimentally Rac = 1100±500 (figure 26) is in close agreement with the
theoretical value for ‘free–rigid’ boundary conditions of 1100.7 (Pellew & Southwell
1940) and with the value determined in § 4.1 for the onset of thermal convection
inside each layer.

The overall duration of thermochemical heterogeneities is very difficult to determine,
since all the dimensionless numbers directly influence it: the buoyancy number
controls the ‘chemical’ resistance to stirring, the viscosity ratio the ‘mechanical’
resistance to stirring, the layer depth ratio the relative volume of heterogeneities
and the Rayleigh number the convective stirring power. Studying the variation of the
overall duration with all dimensionless numbers is beyond the scope of this paper.
Moreover, with our experimental set-up, only the buoyancy number can be changed
independently of all other parameters: as shown in figure 27, the overall duration
then exhibits a strong exponential dependence on B . The chemical heterogeneities
can thus persist for very a long time compared to the characteristics of thermal
convection.

Figure 25. Time evolution of experiment 20. (a) Temperature signals recorded by six
thermocouples located on the vertical probe: their location is given on the right (initial
interface position: 4.4 cm). The time history can be divided in three parts: (i) the stratified
phase, where purely thermal convection develops above and below a stable interface; (ii)
the whole-layer phase, where the interface is destabilized and whole-tank convection takes
place; (iii) the final one-layer phase, where the interior of the tank is well mixed (classical
Rayleigh–Bénard convection). (b) Standard deviation of the temperature signal (measured by
the vertical probe) as a function of depth: circles correspond to the stratified phase (weak
convection in layer 1, strong convection in layer 2), squares to the whole-layer phase and stars
to the final one-layer phase. (c) Wavelet analysis of the temperature signal in the hot thermal
boundary layer (thermocouple located at 0.35 cm from the hot plate): contours follow most
excited periods.
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of the hot plate (open) as a function of the local Rayleigh number. Plume period is defined as
the mean period of temperature fluctuations in the corresponding thermal boundary layer, as
measured by the vertical thermocouple probe. The line corresponds to the best fit according
to (6.2), only taking into account experiments where R̃ai > 104: the experimental critical value
is Rac = 1100 ± 500.
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two-dimensional experiment 24 (square): in these experiments, only the buoyancy number
significantly changes (γ = 8–22, a = 0.25–0.30, Ra= 4.1 × 106–1.5 × 107).
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7. Conclusion
At large Rayleigh number, motions in a two-fluid system are due to three distinct

phenomena: purely thermal convection inside layer 1; purely thermal convection
inside layer 2; and large-scale thermochemical convection, where both layers are
involved.

Experiments reported in this paper supplement the study of the two-layer Bénard
problem in the particular case where the interface between the two fluids greatly
deforms. Two different mechanisms have been described:

(i) dynamic topography appears from the local and partial intrusion into one fluid
of purely thermal features from the other one;

(ii) a Rayleigh–Taylor-type overturn takes place at the interface when the system is
unstable according to marginal stability (B � Bc(γ, a), see Le Bars & Davaille 2002),
or when the most viscous layer convects and the effective buoyancy number based
on the real chemical and temperature profiles becomes lower than 1.

Both regimes are transient and systematically evolve towards one-layer Rayleigh–
Bénard convection. Heterogeneity is however registered over very long times compared
to typical time scales of thermal convection. Further experiments are now necessary
to understand and quantify the influence of viscosity and density contrasts on mixing
processes of such active heterogeneities.

This work benefited from fruitful discussions with Claude Jaupart, Damien Jurine,
Peter Molnar, Jeffrey Park, Neil Ribe, Harro Schmeling and George Veronis. It also
benefited from the constructive comments of Henri-Claude Nataf and an anonymous
reviewer. A.D. is grateful to Yale University for its hospitality. This research has
been supported by the French INSU programs IDYL and IT. This is an IPGP
contribution.

Appendix A. Physical properties of the fluids
Working fluids are essentially water, to which small amounts (< 2%) of a cellulose

called natrosol are added (Tait & Jaupart 1989): their physical properties are
thus comparable to water (for instance, κ = 1.42 × 10−7 m2 s−1), except for density
and viscosity (figure 28). Small amounts of salt (<7 kgm−3) can also be added to
independently control the density of the mixture. Those solutions are totally miscible,
eliminating the unwanted effect of surface tension at the interface, and remain
Newtonian for the low deformation rates associated with the velocity of convective
features in the tank. The coefficient of thermal expansion and the viscosities are
temperature-dependent (figure 29): unless otherwise stated, we use values at the
initial mean temperature of the tank (20 ◦C), which is relevant for global processes
such as the whole-layer regime (see Appendix B); for local processes however, as for
instance thermal boundary layer instabilities, values at the local temperature are used.
Viscosity contrasts between the two layers are taken at the interface, thus at a given
temperature.

Appendix B. Influence of the variations of the thermal expansion coefficient
In addition to the marginal stability study presented in Le Bars & Davaille (2002),

we can study the case where thermal expansion coefficients of layers 1 and 2 are
different (respectively α1 and α2). The density profile corresponding to the linear
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Figure 28. (a) Viscosity (measured with a rotoviscosimeter Haake RV20) and (b) density
(measured with a densimeter Anton Paar DMA 5000) of the working fluids at 20 ◦C as a
function of the percentage in weight of cellulose (no salt).

temperature profile is

ρi = ρi0 − αiρ0((T1 − T0) − (z + a)�T ), (B 1)

where z is the height non-dimensionalized by H . The effective density contrast at the
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and η(T )/η(20 ◦C) =2.45e−0.045T , where T is the temperature in ◦C.

interface (z = 0), taking into account both thermal and chemical effects, is then

�ρinterface = �ρχ + (α2 − α1)ρ0((T1 − T0) − a�T ). (B 2)

In particular, one can note that

�ρinterface < 0 ⇐⇒ B <

(
T1 − T0

�T
− a

)(
α1

α2

− 1

)
, (B 3)
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show calculated points and the solid line indicates the fit according to the law (B 7).

where

B =
ρ10

− ρ20

α2ρ0�T
. (B 4)

The density profile is then unstable independently of convective effects, and the critical
Rayleigh number is equal to 0 (figure 30a).

The main control parameter in a two-layer system is the buoyancy number B that
appears in the continuity of normal stress (see equation (2.13) of Le Bars & Davaille
2002). In the present configuration, B is remplaced by

B̃ = B +

(
T1 − T0

�T
− a

)(
1 − α1

α2

)
. (B 5)

As a first approximation, we can ignore changes in α and use results from Le Bars

& Davaille (2002) by replacing B with B̃ (figure 30a). Then: a chemically unstable

density profile, given by B < 0 when α is constant, now corresponds to B̃ < 0: this

condition is similar to (B 3); the critical value B̃c separating stratified and whole-layer
regimes depends of γ and a, but is almost independent of α1/α2. We then deduce
from (B 5) that

B̃c = Bc

(
α1

α2

= 1

)
(B 6)

and so

Bc

(
α1

α2

)
= Bc

(
α1

α2

= 1

)
+

(
T1 − T0

�T
− a

)(
α1

α2

− 1

)
, (B 7)

in good agreement with numerical results (figure 30b).
This simple linear study thus indicates that the physics of the problem is independent

of the explicit variations in α(T ): in our experiments, its mean value is used.
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